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The Uniform Distribution as a Universal Prior

Nadav Shulman and Meir Feder, Fellow, IEEE

Abstract—In this correspondence, we discuss the properties of the uni-
form prior as a universal prior, i.e., a prior that induces a mutual infor-
mation that is simultaneously close to the capacity for all channels. We de-
termine bounds on the amount of the mutual information loss in using the
uniform prior instead of the capacity-achieving prior. Specifically, for the
class of binary input channels with any output alphabet, we show that the
-channel has the minimal mutual information with uniform prior, out of

all channels with a given capacity. From this, we conclude that the degrada-
tion of the mutual information with respect to the capacity is at most 0.011
bit, and as was shown previously, at most 6%. A related result is that the
capacity-achieving prior, for any channel, is not far from uniform. Some of
these results are extended to channels with nonbinary input.

Index Terms—Uniform distribution, universal prior, -channel.

I. INTRODUCTION

A transmitter that wishes to communicate over an unknown channel
faces several problems. First, the transmitter does not know the rate at
which a reliable communication can be maintained since it does not
know the channel capacity. Second, the encoder may not know how to
design a good code, tuned to the channel, as the code may depend on
the unknown optimal capacity-achieving prior. In this correspondence,
we consider the second problem. We show that the uniform prior dis-
tribution has some universal properties, so that the degradation in using
it universally, instead of the optimal prior is minimal in many cases. A
related observation is that the capacity-achieving prior cannot be too
far from uniform. This implies that codes based on a uniform prior as-
sumption, such as linear codes, work well on a large class of channels,
as discussed, e.g., in [5].

We show in this correspondence the following novel results.
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• In the class of all channels with the same input alphabet and the
same capacity, the uniform distribution maximizes the minimal
mutual information.

• Among all binary input channels with a given capacity, the mu-
tual information induced by the uniform prior is minimal at the
Z-channel.

• As a result, the mutual information induced by the uniform dis-
tribution is never less than about 0.011 bit than the capacity. In
relative terms, as was also shown before, it is never less than about
6% of the channel capacity.

• The capacity-achieving prior, for any channel, can allocate at
most a probability mass 1� e�1 to any input value.

• For nonbinary input channels, we conjecture that a generalized
Z-channel has the maximal degradation in using the uniform
prior. In any case, we show an upper bound on that degradation.

Much of this correspondence extends and proves conjectures dis-
cussed in [6], [1], [3], and [4]. Specifically, in [4] it was shown that
the capacity-achieving prior for binary-input channels allocate at most
1�e�1 to each symbol, but it only conjectures the extension for larger
input alphabet. Also, in [4] it is shown that the degradation in using
the uniform prior is at most 6%, but the extremal properties of the
Z-channel, and thus the fact that maximal degradation is at most 0.011
bit, is not shown.

The correspondence is organized as follows. In the next section, we
show the optimal max-min properties of the uniform prior. The results
for binary-input channels are shown in Section III, and the extension
to nonbinary-input alphabet is discussed in Section IV.

II. THE UNIVERSAL PRIOR

In this section, we explicitly investigate the universal prior, i.e., a
single predetermined prior that can be used (and to design codes based
on it) for all channels, so that the loss in using it instead of the op-
timal prior tuned to channel is monitored. While there may be sev-
eral criteria to measure the goodness of that prior, we use a max-min
approach—choose the prior distribution P , so that the achieved rate
(measured by the mutual information it induces) as compared with the
channel capacity, for the worst possible channel, is maximized. Specif-
ically, one option is to look for P that attains

� = max
P

inf
W

I(P ;W )

C(W )
(1)

where C(W ) = maxP I(P 0;W ) is the capacity of the channel W ,
and the infimum is taken over the class of the possible channels. An
alternative criterion is to look for P that attains

� = min
P

sup
W

[C(W )� I(P ;W )] : (2)

Another case is where the universal prior is designed to workwell for
a class of channels that have the same capacity,C > 0. A modification
of criterion (1) for this case is to find P (which may depend on C) that
attains

�(C) = max
P

inf
fW :C(W )=Cg

I(P ;W )

C
: (3)

In the sequel, the class of channels we consider is the set of all
discrete input memoryless channels with a given input alphabet size
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A < 1 and any (even nondiscrete) output alphabet.1 When the class
of channels is all possible channels with input alphabet of size A, we
denote the max-min ratios of (1), (2), and (3) by �A, �A, and �A(C),
respectively.

Theorem 1: The uniform prior, over the alphabet of size A, attains
�A, �A, and �A(C) for all C .

Proof: The theorem is proved by a simple symmetry argument.
Assume that a distribution P attains �A, i.e., solves the max-min
problem of (1). Let P� be a permutation of P , that is, P� is the same
probability distribution as P , defined over a permutation of the input
symbols, for some permutation � 2 SA where SA is the set of all A!
permutations of the A symbols. Since all channels with the same input
alphabet can be considered, P� also attains (1) for any � 2 SA. Thus,
for any channel W and any permutation �

�A �
I(P�;W )

C(W )

and so, for anyW , using the convexity of the mutual information with
respect to the input distribution

�AC(W ) �
�2S

I(P�;W )

jSAj
� I

�2S

P�
jSAj

;W :

But
�2S

P

jS j
is the uniform distribution, regardless of P . Thus,

the uniform distribution attains (1).
The same proof holds for �A and �A(C).

Corollary 1: �A = infC �A(C) and �A = maxC C(1� �A(C)).

The following lemma shows that the relative degradation in using
the uniform prior is smaller as the channel capacity grows.

Lemma 1: �(C) is monotonically increasing with C .
Proof: Given a channelW (yjx), define a new channelW 0(yjx)

with an additional output symbol E as follows:

W 0(yjx) =
(1� �)W (yjx); if y 6= E

�; if y = E:

W 0 is an erasure version of W , and for any input prior P we have
I(P ;W 0) = (1��)I(P ;W ) which impliesC(W 0) = (1��)C(W ).
Now for a given C , assume W leads to �(C), then, for any C 0 < C
we take � such that C(W 0) = C 0 and so we have

�(C) =
I(U ;W )

C(W )
=

I(U ;W 0)

C(W 0)
� �(C 0)

where U is the uniform prior

Corollary 2 : �A = lim
C!0

�(C):

Later in the correspondence, we investigate the values of �A, �A,
and �A(C). We begin with the binary-input case, and show that the
degradation is small; �2 is about 0:94 and �2 is about 0.011 bit. Un-
fortunately, for large A, the degradation can be significant. If one con-
siders the A-ary input channel with binary output, where W (1j1) =
W (2j2) = 1;W (1ji) = W (2ji) = 1=2 for i = 3; . . . ; A, its capacity
is 1, but I(U ;W ) = 2

A
. Thus, �A � 2

A
.

III. THE BINARY INPUT CASE

We begin with some properties of the mutual information for binary-
input channels. Let q1(y) and q0(y) be two probability distributions on

1Of course, the class of channels is such that all considered quantities are well
defined.

Y . ConsideringY as the output alphabet, these two distributions define
a binary-input channel Q where

Q(yj1) = q1(y) and Q(yj0) = q0(y): (4)

We assume that the capacity of the channelQ is greater than zero, i.e.,
q1 6= q0. For an input probability P (1) = u and P (0) = 1 � u, the
output distribution is

qu(y) = uq1(y) + (1� u)q0(y): (5)

Define

d0(u) =D(q0(y)kqu(y)) =
y2Y

q0(y) log
q0(y)

qu(y)
(6)

d1(u) =D(q1(y)kqu(y)) =
y2Y

q1(y) log
q1(y)

qu(y)
: (7)

These functions are strictly monotonic, d1(u) decreases and d0(u) in-
creases, and d0(0) = d1(1) = 0. The mutual information over the
channel Q, implied by the input distribution P (1) = u, is

I(u;Q) = ud1(u) + (1� u)d0(u): (8)

It is known that the channel’s capacity C(Q) satisfies C(Q) =
d1(u

�) = d0(u
�), where u� is the prior that maximizes the mutual

information.
The derivatives of d1(u) and d0(u) with respect to u are given by

d00(u) = �
y2Y

q0(y)
q1(y)� q0(y)

qu(y)

d01(u) = �
y2Y

q1(y)
q1(y)� q0(y)

qu(y)

which leads to the interesting equalities

ud01(u) + (1� u)d00(u) = 0 (9)

and

I 0(u;Q) = d1(u)� d0(u) (10)

for any 0 � u � 1. Since d1(1) = 0 we have

d1(~u) = �
1

~u

d01(u)du

=
1

~u

1� u

u
d00(u)du

=
1

~u

1

u2
d0(u)du�

1� ~u

~u
d0(~u) (11)

where the second equality is due to (9) and the third is obtained by
partial integration. Substituting (11) in (8) leads to

I(~u;Q) =
1

~u

~u

u2
d0(u)du: (12)

Utilizing the properties above, we prove the following theorem
stating that the capacity-achieving prior, for any binary input channel,
cannot be too skewed.

Theorem 2: For any binary-input channel, the capacity-achieving
prior assigns a probability greater than e�1 for both symbols.

As discussed earlier, this result was already shown in [4]. Our deriva-
tion is different and allows (as shown later in Section IV) the extension,
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too skewedconjectured in [4], to nonbinary-input alphabet. Our deriva-
tion starts with the following technical lemma which is proved in the
Appendix .

Lemma 2: Let f(x) be a positive, nonincreasing function such that
1

0
f(x)dx = 1 and t solves

t

0

1

1� x
f(x)dx = 1:

Then t � 1 � e�1, with equality if and only if f(x) = 1 for all
x 2 (0; 1).

Proof of Theorem 2: We assume that the capacity is greater than
zero, since at zero capacity corresponding to q1(y) = q0(y), any prior
leads to the same, zero, mutual information.

Denote the capacity-achieving prior u�. It satisfies d1(u
�) =

d0(u
�), and so

d1(0) +
u

0

d01(u)du = d0(0) +
u

0

d00(u)du:

Since d0(0) = 0 we have from (9)

u

0

�1

1� u
d01(u)du = d1(0):

Suppose first that d1(0) < 1. Using Lemma 2 with f(�) =
�d01(�)=d1(0), leads to u� � 1 � e�1. Equality holds iff
�d01(u)=d1(0) = 1 for 0 � u � 1, but since d01(1) = 0, this
implies that the channel capacity is zero. So for the binary channels
with nonzero capacity, u�< 1�e�1.

In case d1(0) = 1, pick some 0 < � < u�, and define

~d1(u) =
d1(u); for u � �

d1(�) + (u� �)d01(�); for u < �.

Define ~d0(u) by ~d0(0) = 0 and its derivative ~d00(u) =
�u
1�u

~d01(u). Let
u+ solve

u

0

~d00(u)� ~d01(u)du =
u

0

�1

1� u
~d01(u)du = ~d1(0):

Since for u < � we have ~d00(u) < d00(u), it follows that u+ � u�.
Using this and Lemma 2 for u+ leads to u� < u+ < 1� e�1.

We showed, then, that u� < 1�e�1. Due to symmetry we also have
1� u� < 1� e�1, i.e., u� > e�1.

In view of our derivation, this result has an interesting geometrical
interpretation. In solving for the capacity-achieving prior, we actually
search for a distribution q satisfying D(q1kq) = D(q0kq), where q1
and q0 are the output probability given each input symbol, and q is the
output probability induced by the capacity-achieving prior. This q can
be interpreted as the average of q1 and q0 in the sense of the divergence.
Our result indicates that this informational average q = uq1+(1�u)q0
is not so far from the arithmetic, Euclidean average (q1 + q0)=2.

Next we investigate the maximal degradation in the mutual informa-
tion induced by the uniform prior. It turns out that the maximal degra-
dation happens at the Z-channel due to its extremal behavior.

The Z-channel, Zp, is a binary-input binary-output channel which
is defined by a single parameter p, P (0j0) = 1, and P (1j1) = p, as in
Fig. 1.

Denote the input prior P (1) = u. For the Z-channel we choose to
denote the divergences d1(u) and d0(u), defined above, by

z1(u) =D(f1� p; pgkf1� up; upg) (13)

z0(u) =D(f1;0gkf1� up; upg) = log
1

1� up
: (14)

Fig. 1. The Z-channel.

The mutual information over the Z-channel satisfies

I(u;Zp) = IZ(u) =uz1(u) + (1� u)z0(u)

=h(up)� uh(p)

where h(p) = �p log p � (1 � p) log(1 � p) is the binary entropy.
The capacity is denoted C(Zp) = maxu I(u;Zp). The maximizing u
is u� = q

1+pq
where q = 1 � p, see [3].

The following two lemmas demonstrate the extremal behavior of the
divergence z0(u) and the mutual information I(u;Zp) as functions of
the input prior u.

Lemma 3: For any binary-input channel, with divergence d0(�), and
any Z-channel, if for some 0 < ~u � 1

z0(~u) = d0(~u)

then

z0(u) � d0(u)

for any 0 � u < ~u.

The proof of this lemma, and an interesting corollary to it are given
in the Appendix .

Lemma 4: Let IZ(u) = I(u;Zp) and I(u) = I(u;Q) be the
mutual informations associated with the Z-channel and a general bi-
nary input channel Q, respectively, both with input prior satisfying
P (1) = u. If I(~u) = IZ(~u) for some 0 < ~u � 1 then I(u) � IZ(u)
for u � ~u.

Again, the proof is given in the Appendix . We are now ready for the
main result.

Theorem 3: Among all binary-input channels with the same ca-
pacity, the Z-channel has the smallest mutual information given uni-
form input distribution.

Proof: An equivalent statement of the theorem is that among all
binary-input channels for which the mutual information induced by a
uniform input distribution is the same, theZ-channel has the maximum
capacity. We show this statement.

Given any binary-input channel Q, without loss of generality, as-
sume that the capacity achieving prior for Q satisfies P (1) � 1

2
.

Define a Z-channel Zp such that it has the same mutual information
for uniform input distribution. By Lemma 4, I(u;Zp) � I(u;Q) for
u � 1=2. Hence,

C(Zp) = max
0�u�1=2

I(u;Zp) � max
0�u�1=2

I(u;Q) = C(Q)

which completes the proof.

Theorem 3 implies that �2(C) is the ratio between the mutual infor-
mation of the Z-channel with the uniform prior, and its capacity. This
rate degradation is depicted in Fig. 2.
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Fig. 2. �2(C)—the degradation of the rate, when using the uniform prior in the Z-channel.

Fig. 3. C(1 � �2(C))—the degradation, in bits, when using the uniform prior in the Z-channel.

The maximal degradation occurs when C (and so p) goes to 0.
Golomb showed [3] that the capacity-achieving prior of theZ-channel,
for p ! 0, is P (1) = u ! e�1. Thus, the value of this maximal
degradation is

�2 = lim
p!0

I(1=2;Zp)

I(e�1;Zp)
=

e

2 log
2
e
= 0:9420847 . . .

which is less than 6% loss.
As noted, �2(C) provides a refined bound on the degradation, as a

function of the capacity. For example, for channels with C = 1=2, the
degradation when using the uniform prior is less than � 2%.

In terms of absolute values2

�2 = min
C

C(1� �2(C)) � 0:011:

Hence, the uniform distribution leads to a mutual information that is
less than the capacity by at most � 0.011 bit. The absolute maximal

2To evaluate , one should solve the equation

1

2
log

q

1 + q
=

log q

(1� q)q�q=1�q + (1� q)2
:

We used Matlab.
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degradation as function of the channel capacityC(1��(C)) is plotted
in Fig. 3.

Finally, we note that Lemma 4 leads to another result: among all
binary-input channels with the same capacity, the Z-channel has a ca-
pacity-achieving prior which allocates the minimal mass, 1=e on the
symbol “1.” This proves Theorem 2, and the result in [4], in yet an-
other way.

IV. NONBINARY INPUT ALPHABET

This section extends some of the results, previously shown for binary
input channels, to general input alphabets.

Theorem 4: The capacity-achieving prior of any memoryless, dis-
crete-input channel is smaller than 1� e�1 for all symbols.

Proof: Given a channel W (yjx) and capacity-achieving input
distribution P �(x), we wish to show that P �(x0) < 1� e�1, for any
x0. Denote by q(y) the output distribution. Then,D(W (yjx)kq(y)) =
C(W ) for P �(x) > 0. Assume P �(x0) > 0. Create the following bi-
nary input channel:

Q(yj0) =W (yjx0)

Q(yj1) =
1

1� P �(x0)
x 6=x

P �(x)W (yjx):

Using P (0) = P �(x0); P (1) = 1 � P �(x0) as the input distribution
to the channelQ leads to the same q(y) as the output distribution. Due
to the convexity of the divergence we have

D(Q(yj0)kq(y)) = C(W ) � D(Q(yj1)kq(y)):

Hence, the capacity-achieving prior for this binary-input channel gives
greater or equal probability for the symbol 0 than P �(x0). Thus, using
Theorem 2 we have P �(x0) < 1� e�1.

Another bound on the capacity-achieving prior is given in the fol-
lowing lemma.

Lemma 5: Consider a memoryless channel with a discrete-input al-
phabet and a capacityC . Let P � be the capacity-achieving prior. Then,
for each input symbol x we have

P �(x) � 2�C :

The proof is given in the Appendix .

Generalized Z-channel: This channel is defined by three parame-
ters: A is the input alphabet size, 1 < Ae � A is the output size (and
the “effective” input size), and 0 � p � 1 as follows:

ZA
p (yjx) =

1; if x < Ae and y = x

0; if x < Ae and y 6= x

p; if x = Ae and y = x

(Ae � 1)�1(1� p); if x = Ae and y 6= x

A�1
e

A

x =1

ZA
p (yjx0); if x > Ae:

(15)

Note that the input symbols greater than Ae are not used to achieve
the capacity, and they have no contribution to the mutual information
when uniform distribution on the input symbols is used. Fig. 4 shows
a generalized Z-channel with A = 4; Ae = 3.

Due to the symmetry between the Ae � 1 symbols, the capacity-
achieving input distribution is of the form P (x = Ae) = u, and
P (x) = 1�u

A �1
for x < Ae

I(u;ZA
p ) = h(up)� uh(p) + (1� u) log(Ae � 1):

Fig. 4. Generalized Z-channel A = 4; Ae = 3.

Following [3], the capacity-achieving prior is

u� =
qq=p

(Ae � 1)1=p + pqq=p

where q = 1 � p. For p ! 0, in general u� ! 0, unlike the binary
case (Ae = 2) for which u ! e�1. This indicates that for nonbinary
input channels shows there is no ”minimum probability” for each of
the (used) input symbols.

Substituting u�, we get the capacity of the generalized Z-channel

C(ZA
p ) = log Ae � 1 +

pq

Ae � 1

q=p

: (16)

As seen easily from the definition of the channel, for each value ofC �
logA, choosing Ae to be the minimal value such that C < logAe,
there is a value for p that will lead to a generalized Z-channel with
capacity C .

The mutual information over this channel, given a uniform distribu-
tion U over all A input symbols, is

I(U ;ZA
p ) =

AeA
�1 h(A�1

e p)� A�1
e h(p) + (1�A�1

e ) log(Ae � 1) :

Conjecture 1: For a memoryless channel with input alphabet size
A, �A(C) is achieved by the generalized Z-channel.

If the conjecture is true, for a given capacityC , �A(C) / 1

A
forA’s

greater or equal to 2C . And in particular

�A =
2

A
�2 =

e

A log
2
e
:

The generalizedZ-channel provides an upper bound on �A(C), con-
jectured to be the actual value. In the sequel, we shall derive a lower
bound on �A(C).

The following lemma bounds the ratio between the mutual informa-
tions associated with two input probabilities in terms of of the ratio be-
tween these probabilities. The proof for this lemma is in the Appendix .

Lemma 6: Given a channel W and two prior distributions P and
P 0, then

I(P ;W )

I(P 0;W )
� min

x

P (x)

P 0(x)
:

Combining Lemma 6 , Theorem 4 ,and Lemma 5 we obtain for a
memoryless channel with discrete-input alphabet of size A

�A(C) �
1

A min(2�C; 1� e�1)
: (17)
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Fig. 5. The simulation results for A = 4.

Corollary 3: For a memoryless channel with input alphabet size of
A, if K is an integer such that 2 � K � A, then

�(logK) =
K

A
: (18)

We finally show simulation results that provide some insight on the
value of �A(C). In this simulation, depicted in Fig. 5, channels with
input and output alphabet of size 4 were selected randomly.3 For each
chosen channel, we calculated the capacity and the mutual information
associated with the uniform prior. The simulation contains more than
a million points. The fact that none of the randomly selected channels
supplies a counterexample for our conjecture on �A(C), and that many
examples lie on the border implied by the conjecture, supports indeed
the conjecture validity. Also, note that for this case of A = 4, the
conjecture leads to �4 = 0:5, while the lower bound we proved on leads
to �4 � 0:512. So in terms of the difference in bits, the degradation in
using the uniform prior is estimated quite well. Unfortunately, it is not
as low as 0.011 bit, shown for binary-input channels.

V. SUMMARY

This correspondence shows the optimal property of the uniform dis-
tribution that it attains, universally, over all memoryless channels, the
maximal mutual information. It was further shown that the degradation
in using it, instead of the true capacity-achieving prior, is worst for the
Z-channel, and the amount of that degradation, for binary-input chan-
nels, is quite small.

The optimal properties of the uniform prior were largely observed,
see, e.g., [5]. An additional interesting result [2] states that the ex-
purgated error exponent is maximized by the uniform prior for all bi-
nary-input channels. All these results indicate that codes designed, im-
plicitly or explicitly, with a uniform prior can work well for a large
class of discrete-input channels.

For power-constrained channels, the role of the uniform prior is
played by the Gaussian prior, which essentially can be regarded as
a uniform distribution over a large-dimension ball, whose radius
represents the power constraint. A recent result [7] analyzes the loss in
using the Gaussian prior instead of the capacity-achieving prior and,

3We used a “smart” lottery scheme in order to have a good coverage of the
different types of channels

indeed, shows that the loss is small. However, for this and other similar
cases, the problem of finding an optimal min-max prior, analogous
to the result for discrete memoryless channel (DMC) shown in this
correspondence, is still open.

APPENDIX

Proof of Lemma 2: Assume that out of all functions that satisfy
the monotonicity and integrability conditions above f(x) leads to the
maximal possible value of t, denoted t�. Without loss of generality,
we can assume f(x) = c for x > t� where c is a constant chosen to
satisfy 1

0
f(x)dx = 1 and will be no greater than f(t�). Define a new

function g(x) that satisfies the conditions, as follows:

g(x) =
f(x) + f(x+ v

2
)� c; for x � v

2

c; for x > v

2

where v = inffxjf(x) = cg.
Since v � t� and t

0

f(x)
1�x

dx = 1 we have

t

0

g(x)

1� x
dx

= 1 +
0

f x +
v

2
� c

1

1� x
�

1

1� (x+ v

2
)

dx � 1:

But, if it is strictly smaller than one it contradicts the maximality of t�.
Equality to one leads to v = 0, which means that g(x)=f(x)=1 for
x2(0; 1). Solving for t with f(x)=1 leads to t�=1�e�1.

Proof of Lemma 3: It is sufficient to show that if z0(~u) = d0(~u),
then z00(~u) � d00(~u) with equality if and only if z0(�) = d0(�). Now,
z0(~u) = d0(~u) means

log
1

1� ~up
=

y2Y

q0(y) log
q0(y)

~uq1(y) + (1� ~u)q0(y)
: (19)

Using Jensen inequality and taking the exponent of both sides

1

1� ~up
�

y2Y

q0(y)
q0(y)

~uq1(y) + (1� ~u)q0(y)
: (20)

Since log(�) is strictly convex, equality in the last equation will hold
only if q1 and q0 fit the Z-channel (actually it might fit an “effective
Z-channel” where several output symbols have the same distribution
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as the “0” symbol in the Z-channel, and a similar situation for the “1”
symbol). Now

~uz00(~u) =
~up

1� ~up
=

1

1� ~up
� 1

� � 1 +
y2Y

q0(y)
q0(y)

~uq1(y) + (1� ~u)q0(y)

=
y2Y

q0(y)
~uq0(y)� ~uq1(y)

~uq1(y) + (1� ~u)q0(y)
= ~ud00(~u)

which completes the proof.

Lemma 3 leads to the following interesting inequality for the diver-
gence.

Corollary 4: For any distributions p1(y); p0(y), let p be such that

D(p0kp1) = log
1

1� p

then

D(p0kup1 + (1� u)p0) � log
1

1� up

for all 0 � u � 1.

This corollary is stronger than the straightforward usage of the log-
function monotonicity which is the above inequality with p = 1.

Proof of Lemma 4: Using (12)

0 = IZ(~u)� I(~u) =
1

~u

~u

u2
[z0(u)� d0(u)]du

where d1; d0; z1 and z0 were defined earlier. Hence, we must have that
at least at one point u, ~u � u � 1 z0(u) = d0(u). As a result, due to
Lemma 3, z0(u) � d0(u) for all u < ~u. Using again (12), completes
the proof.

Proof of Lemma 5: We need to prove that

C � log
1

maxxP �(x)
(= H1(P �)) :

Given that the channel law is W (yjx), the output distribution given
P �(x) is

Q
�(y) =

x

P
�(x)W (yjx)

then we have, for each x (such thatP �(x) > 0)C = D(W (�kx)kQ�).
But since for each y we have Q�(y) � P �(x)W (yjx) we have

C = D(W (�kx)kQ�) � � logP �(x)

which completes the proof.

Proof to Lemma 6: Define r = maxx
P (x)
P (x)

, then the lemma
claims that

I(P 0;W ) � rI(P ;W ):

Since for each x, P 0(x) � rP (x), it is sufficient to show that the
function

I(P ;W ) =
x;y

P (x)W (yjx) log
W (yjx)

x
W (yjx) P (x)

P (x )

is increasing with respect to each P (x) (without the constrain

x
P (x) = 1).

Define

Q(y) =
x

W (yjx)
P (x)

x
P (x0)

for each x0, we have
dI(P ;W )

dP (x0)
=

y

W (yjx0) log
W (yjx0)

Q(y)

�
x;y

P (x)W (yjx)
1

Q(y)

dQ(y)

dP (x0)

=D(W (yjx0)kQ(y))

�
x;y

P (x)W (yjx)

Q(y)

W (yjx0)�Q(y)

x
P (x0)

=D(W (yjx0)kQ(y)) � 0

which completes the proof.
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A Gaussian Input Is Not Too Bad

Ram Zamir, Senior Member, IEEE, and Uri Erez, Member, IEEE

Abstract—We consider the problem of choosing a robust input for
communicating over an input constrained additive-noise channel where
the noise distribution is arbitrary. We show that the mutual information
rate achievable using a white Gaussian input never incurs a loss of more
than half a bit per sample with respect to the power constrained capacity.
For comparison, for the family of colored Gaussian noise channels a
white Gaussian input loses at most log( ) 2 0 265 bit per sample
with respect to the optimum water-pouring solution. For general input
constraints, we derive a formula for choosing the best input in the min-max
capacity loss (bound) sense. The bound on the capacity loss is tight for
pulse position modulation (PPM) in the presence of a bursty jammer.

Index Terms—Gaussian codebook, min-max rate loss, unknown chan-
nels, white versus water-pouring spectrum.

I. INTRODUCTION

Consider additive-noise channels of the form

Y = X +N (1)
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